☔ Dwa Satelity Krążą Wokół Ziemi Po Różnych Orbitach

Palę Schematy (64 punktów) > >Tak sobie myślałem skoro Słońce siłą grawitacji przyciąga planety układu słonecznego to czemu owe planety nie polecą prosto do tylko krążą wokół niego? > Krótką odpowiedzią może być „zasada zachowania momentu pędu”, albo „gdyby było inaczej, nie prowadzilibyśmy tej rozmowy”, ale to Jest to naturalny satelita, który zawsze porusza się po odległej orbicie lub jest ukośny, a czasem do tyłu, był utrzymywany przez swoją planetę matkę, w przeciwieństwie do zwykłych satelitów, które powstały na orbicie wokół niej. Nieregularne satelity planet zawsze były identyfikowane jako zróżnicowana liczba bardzo małych Planetoidy bliskie Ziemi. Orbity tych ciał niebieskich przechodzą blisko Ziemi. Niektóre z nich poruszają się tak blisko Ziemi, że mogą stanowić niebezpieczeństwo. Jest jednak druga strona medalu – ze względu na fakt, że znajdują się tak blisko Ziemi istnieje możliwość wysłania na nie statku kosmicznego. Ruch ten jest odzwierciedleniem ruchu obrotowego Ziemi wokół Słońca, który powoduje, że Słońce przez cały rok opisuje (pozorną) trajektorię w sferze niebieskiej – ekliptykę. … jako odbicie widzimy, jak słońce opisuje ścieżkę na sferze niebieskiej przez cały rok, która ma nachylenie 23,5 ° w stosunku do równika niebieskiego. Z wyjątkiem Merkurego i Plutona, wszystkie planety krążą wokół Słońca również w kierunku przeciwnym do ruchu wskazówek zegara. To samo dzieje się z satelitami krążącymi wokół planet. Planety to znacznie mniejsze gwiazdy, które krążą wokół Słońca po prawie kołowych orbitach. Jak powstał model geocentryczny? gru 29, 2022. Astronom o imieniu Eudoxus stworzył pierwszy model geocentrycznego wszechświata około 380 roku p.n.e. Eudoksos zaprojektował swój model wszechświata jako serię kosmicznych sfer zawierających gwiazdy, słońce i księżyc, wszystkie zbudowane wokół Ziemi w ich centrum. Ruch obrotowy Ziemi (ruch wirowy Ziemi) – obrót Ziemi wokół własnej osi z zachodu na wschód [2]. Okres między kolejnymi górowaniami Słońca nad danym południkiem nazywamy dobą słoneczną i wynosi 24 godziny [2]. Czas jednego obrotu względem odległych gwiazd wynosi 23 godziny 56 minut i 4,1 sekundy. Okres ten nazywa się dobą średnia orbita okołoziemska – obiekty krążące na wysokości od 2000 km do orbity geosynchronicznej (35 786 km) orbita geosynchroniczna – obiekty o okresie obiegu równym dobie gwiazdowej Ziemi (35 786 km), w tym każda orbita geostacjonarna. wysoka orbita okołoziemska – obiekty krążące powyżej orbity geosynchronicznej (35 786 km) Znajdź równanie toru cząstki w ruchu na płaszczyźnie. Naszkicuj trajektorię cząstki na płaszczyźnie. x y. x y. 27. Łódka opuszcza przystań w momencie t = 0 i kieruje się na otwarte jezioro z przyspieszeniem 2,0 i ^ m/s 2 . Silny wiatr spycha łódkę z kursu, nadając jej dodatkową prędkość ( 2,0 i ^ + 1,0 j ^ ) m/s. Ale około 450 lat temu Mikołaj Kopernik wykazał, że Ziemia krąży wokół Słońca, a dni następują po nocach, a noce po dniach, ponieważ Ziemia obraca się wokół siebie. Kto odkrył obrót Ziemi? W kosmicznej skali to bardzo bliskie sąsiedztwo. W 2018 roku dwie metody pozwoliły ustalić, że krążą wokół niej przynajmniej trzy planety. Oznacza się je literami dodawanymi do nazwy gwiazdy, ale pomija się literę a. Krążąca najbliżej gwiazdy L 98-59 planeta b jest większa od Marsa, lecz mniejsza od Ziemi. 1. System geocentryczny. System, w którym centrum Wszechświata stanowi Ziemia, to system geocentryczny. Jako pierwszy opisał go Pitagoras. Uważał on, że Ziemia jest kulą unoszącą się w przestworzach, a wszystkie inne ciała krążą dookoła niej. Arystoteles, Archimedes Hipparch byli również zwolennikami tego systemu. TmlCmD. Moja wiedza na temat systemu i odbiorników GPS jest fragmentaryczna i nie pretenduję do roli eksperta w tej podanych tu informacji może się wydać naiwnymi i oczywistymi dla studentów geodezji i fachowców z branży, sądząc jednak po trudnościach jakie miałem przy wyszukiwaniu nawet prostych informacji o np. układzie odniesienia Pułkowo, systemie "42" czy zwłaszcza "65" uważam, że użytkownikom GPS mogą się przydać. Uwaga! Z dniem 2000-05-01decyzją rządu USA został na stałe wyłączony program celowo pogarszający dokładność określania pozycji przez cywilne odbiorniki GPS (SA - Selective Availability). Zamieszczone w poniższym tekście rozważania na temat dokładności odbiorników GPS dotyczące SA stają się w związku z tym bezprzedmiotowe! Pozostają jako ciekawostka (do czasu ponownego włączenia SA?) Co to jest GPS? Nazwa GPS jest skrótem od angielskiej nazwy Global Positioning System. Jest to amerykański, wojskowy system określania pozycji geograficznej, z pewnymi ograniczeniami udostępniony dla powszechnych zastosowań cywilnych. Ogólnie biorąc system składa się z: Dwa pierwsze segmenty są utrzymywane przez rząd amerykański. Segment użytkownika to odbiorniki GPS między innymi takie jak np. GPS38. Jak działa GPS (w największym uproszczeniu )? Wokół Ziemi, na wysokości około 20 000km, po dokładnie znanych orbitach krążą satelity. Parametry orbit są kontrolowane przez stacje naziemne. Satelity wysyłają sygnały radiowe na częstotliwościach ok. 1,5 GHz pod kontrolą zsynchronizowanych ze sobą wzorców czasu. Na podstawie różnic czasu w jakim docierają do odbiornika sygnały z satelitów i co za tym idzie różnic drogi, mikroprocesor w odbiorniku dokonuje obliczenia pozycji odbiornika. Warto pamiętać że: Sygnały docierające do odbiornika z poszczególnych satelitów są poniżej poziomu szumów i do ich dekodowania stosowane są wyszukane techniki demodulacji. Dokładność orbity satelity (odchyłka od teoretycznej) ma bezpośredni wpływ na dokładność określania pozycji odbiornika. Do określenia pozycji odbiornika (ściślej: anteny odbiornika) w 2 wymiarach na powierzchni Ziemi potrzeba teoretycznie "widoczności" 3 satelitów (przy stosowanych częstotliwościach sygnały rozchodzą się "optycznie") W nawet najprostszym odbiorniku obliczeń pozycji dokonuje specjalizowany mikroprocesor o bardzo dużej mocy obliczeniowej. Sygnały odbierane przez odbiorniki "powszechnego użytku" zawierają (zawierały) sztucznie wprowadzany przez Departament Obrony USA sygnał zakłócający (SA), zwiększający błąd określania pozycji. Odbiorniki uprawnione (wojskowe) eliminują ten sygnał zakłócający, może być on także wyłączony w zależności od decyzji Departamentu Obrony. System GPS może zostać w dowolnym momencie wyłączony przez rząd USA. Odbiornik GPS Podstawowe bloki odbiornika GPS (precyzyjnie: segmentu użytkownika) to: antena tor wysokiej częstotliwości blok cyfrowego przetwarzania sygnału układy wejścia/wyjścia (wyswietlacz, klawiatura, port komunikacyjny) procesor sterujący układ zasilania W najtańszych odbiornikach wszystkie te bloki zabudowane są w jednej, hermetycznej obudowie. W zwiazku z tym, że antena znajduje się wewnątrz odbiornika, utrudnione jest ich stosowanie w samochodzie, pod pokładem łodzi itp. (antena musi widzieć satelity). Są one przeznaczone przede wszystkim dla turystyki pieszej i rowerowej. W większości konstrukcji antena jest osobnym podzespołem, lub co najmniej istnieje możliwość dołączenia anteny zewnętrznej. Konstrukcje takie są łatwe do zamontowania w ciężarówce, jachcie lub samolocie. Istnieją także na rynku rodziny podzespołów do konstruowania kompletnych odbiorników GPS w formie nieobudowanych modułów. Na przykład zestaw modułu anteny z modułem odbiornika Oncore firmy Motorola, uzupełnione o zasilacz (5V 200mA) i prosty konwerter poziomów logicznych TTL/RS232 po podłączeniu do komputera PC z odpowiednim programem tworzy kompletny odbiornik GPS o funkcjach ograniczonych tylko możliwościami programu na PC. Dokładność określania pozycji Podstawowym zagadnieniem związanym z odbiornikiem GPS jest jego dokładność określania pozycji. Dla celów reklamowych podawane są różne wielkości np. +/-25m, 15m i mniejsze. Te wielkości oznaczają dokładność w najbardziej sprzyjających warunkach: przy śledzeniu przez odbiornik maksymalnej liczby, optymalnie usytuowanych satelitów przy braku sygnału zakłócającego (SA). W warunkach rzeczywistych błąd pozycji podawanej przez odbiornik GPS jest znacznie większy; sztucznie wprowadzony błąd (SA) wynosi do 100m, zaś sumaryczny błąd odbiornika związany z nim samym i nieoptymalnym ułożeniem satelitów rzadko jest mniejszy niż 30m (GPS38). Trzeba założyć, że pozycja podawana przez ręczny odbiornik GPS w warunkach istnienia SA jest zgodna z rzeczywistą z błędem rzędu +/-150m (+/- 5" .. 7"). Na rysunkach pokazano wykresy pozycji raportowanej przez 8-kanalowy odbiornik firmy Motorola z anteną umieszczoną stacjonarnie na dachu budynku. Pierwszy wykres powstał w ciągu godziny, drugi w ciągu ok. 10 godzin; odbiornik śledził w przeważającym czasie maksymalną możliwą dla niego liczbę satelitów tj. 8. Na osiach zaznaczono odchyłkę (w metrach) od pozycji określonej przez uśrednienie pomiarów z klikudziesięciu godzin. Istnieją metody ominięcia sztucznie wprowadzonego ograniczenia dokładności odbiornika. Taką metoda jest technika DGPS, która polega na uwzględnianiu przez program w odbiorniku obliczajacym pozycję, poprawki przesyłanej droga radiowa ze stacjonarnego odbiornika GPS o dokładnie znanej pozycji. Teoretyczna dokładność pozycji zwieksza się do kilku metrów, wymagane są jednak dodatkowe, drogie urzadzenia i dostęp do sygnału radiowego nadającego poprawkę. Współczesne przenośne odbiorniki, posiadające 12 kanałów równoległych (np. GPS12), określają pozycję w sprzyjających warunkach z dokładnością kilku metrów. Opis działania najprostszego odbiornika dla kogoś, kto jeszcze nigdy nie miał odbiornika w ręku (z dygresjami). Najtańsze odbiorniki GPS to na przykład GPS 38 (starszy model już nie produkowany) i GPS 12 firmy Garmin. Są dostępne w cenie 150 - 250$ lub nawet taniej. Wielkością i wyglądem przypominają niezbyt mały telefon komórkowy. Są hermetyczne i nierozbieralne. Mają graficzny wyświetlacz ciekłokrystaliczny 64x100 pikseli. Jeszcze tańsze są np. odbiorniki Magellan Pionieer, choć mają mniej możliwości niż Garmin; kosztują w USA poniżej 100$. Podstawową funkcją odbiornika GPS jest podawanie pozycji geograficznej. Tak jest w istocie, choć nawet te najprostsze odbiorniki ręczne maja szereg funkcji dodatkowych: podają czas, prędkość i kierunek poruszania się, azymut i odległość do zaprogramowanego punku, zapisują przebytą trasę, prowadzą po zaprogramowanej trasie itd.. Potrafią działać w różnych układach odniesienia i różnych siatkach. Pierwsze włączenie po zakupie (Garmin GPS38) Po założeniu 4 ogniw alkalicznych R6 do odbiornika można go włączyć. Pokaże się strona powitalna, a po kilku sekundach strona satelitów. Odbiornik rozpocznie proces synchronizacji z sygnałami z satelitów. Pierwszego włączenia po zakupie najlepiej dokonać w otwartym terenie, tak aby mieć widoczność nieba co najmniej od 30° nad horyzontem wzwyż, we wszystkich kierunkach. Uwaga ta dotyczy zwłaszcza osób niecierpliwych, dla uniknięcia rozczarowań. W mieście, odbiornik wystawiony z okna może nie "złapać" wystarczającej liczby satelitów nawet przez godzinę co może doprowadzić do zwątpienia w jego prawidłowe funkcjonowanie. Tu małe wyjaśnienie nie pretendujące do naukowo ścisłego. Jak wspomniano, obliczanie pozycji odbywa się na podstawie czasu potrzebnego na dotarcie do odbiornika sygnałów od różnych satelitów. W tym celu odbiornik musi ustawić na postawie informacji odbieranych z satelitów swój wewnętrzny zegar, a następnie w osobnych kanałach "śledzić" sygnały od każdego z nich. Sygnały z satelitów, oprócz znaczników czasu, zawierają także dane o parametrach orbit wszystkich satelitów systemu, dane o korekcjach opóźnienia sygnałów w atmosferze i szereg innych o których nie wiem. Wszystko to jest potrzebne programowi wyliczającemu pozycję. Pozbieranie tych danych trwa, jednak niektóre z nich są aktualne długo i jeśli już są w podtrzymywanej wewnętrzną baterią pamięci odbiornika, nie trzeba ich wszystkich odbierać. Jeśli odbiornik długo nie był używany lub był wieziony "zza oceanu", to dane zawarte w pamięci są nieaktualne i muszą być odebrane z satelitów. Ten proces można wspomóc podając przybliżone dane o miejscu w którym się znajduje, o co odbiornik czasem prosi pytając o nazwę kraju. Generalnie: im dłużej odbiornik nie był używany tym dłużej trwa jego przygotowanie do pracy. Może to być od kilku sekund do kilkudziesięciu minut. Jeśli GPS38 (GPS12) ma już podstawowe dane o satelitach, to na wyświetlaczu, na stronie satelitów można zobaczyć schemat ich ułożenia na sferze niebieskiej. Ułatwia to zorientowanie się skąd nadchodzą sygnały i w którym kierunku przestrzeń powinna być nie zasłonięta. Widocznych nad widnokręgiem satelitów może być teoretycznie do 12, stąd najnowsze odbiorniki tyle ich mogą śledzić (GPS12). Starsze odbiorniki budowano jako pseudo 8-kanałowe (GPS38: jeden kanał multipleksowany), istnieją takie, które śledzą 12 satelitów w dwóch multipleksowanych kanałach, a słyszałem o 4-kanałowych. Większa liczba śledzonych równocześnie satelitów pozwala na wybieranie do obliczeń sygnałów od tych, które w danym momencie są widoczne i mają najlepszą geometrię (satelity ułożone w linii prostej mają "złą geometrię"). Odbiorniki 12-kanałowe są dokładniejsze i bardziej odporne na zmiany sytuacji przy poruszaniu się. Uzasadnić to, jak sądzę, można najprościej tak, że jeśli w czasie jazdy odbiornikowi 8-kanałowemu zniknie nagle widoczność satelitów o "dobrej geometrii" które śledził, a pozostanie widoczność innych, wprawdzie o "gorszej geometrii", których jednak nie śledził z braku wolnych kanałów, to zanim zacznie je śledzić nie będzie miał możliwości uwzględniania ich w obliczeniach; "zgubi się" lub pogorszy dokładność wyliczanej pozycji. Poza tym, nowsze odbiorniki mają inną konstrukcję; mają prawdziwie 12 równoległych kanałów w torze odbiorczym (np. GPS12), podczas gdy starsze mają jeden kanał z multipleksowaniem (GPS38). Z takiej konstrukcji wynika mniejszy czas potrzebny na określenie pozycji po włączeniu i większa dokładność (nie wiem jak to uzasadnić). W praktyce nad widnokręgiem przeważnie znajduje się mniej niż 12 satelitów (obserwowałem sytuacje gdy odbiornik raportował teoretyczną obecność 5 satelitów), a spośród nich nie wszystkie są widoczne; odbiornik 8-kanałowy śledzi wszystkie praktycznie widoczne satelity. Kiedy odbiornik zacznie już śledzić co najmniej 3 satelity z "dobrą geometrią", może podawać pozycję geograficzną w dwóch wymiarach; przy czterech i więcej śledzonych satelitach może podawać także wysokość. GPS38 (GPS12) automatycznie przełączy się na pokazywanie drugiej strony: informacji o pozycji i podawanej przez odbiornik GPS informacji o wysokości jest niewielkie, zwłaszcza na nizinach. Dokładność podawania wysokości (w metrach) jest gorsza niż dokładność pozycji. Informacja, że jesteśmy na wysokości 150m przy błędzie +/- 150m to żadna informacja. Odbiornik GPS może podawać pozycję we współrzędnych geograficznych (stopnie, minuty, sekundy), a także w siatce kilometrowej. Najwygodniej było by odczytać pozycję podawaną przez GPS w siatce kilometrowej i poszukać pozycji na mapie też posiadającej siatkę kilometrową. Ale to nie takie proste... O mapach Ręczny odbiornik GPS w samochodzie Wbrew pozorom najprostszy, zintegrowany odbiornik GPS taki jak Garmin GPS38 całkiem dobrze sprawuje się w samochodzie. Umieszczony na desce rozdzielczej co prawda nie "widzi" części satelitów zasłanianych przez dach i słupki boczne, ale mimo to radzi sobie z obliczaniem pozycji. W otwartym terenie śledzi przeważnie 5 - 6 satelitów. Problemy są podczas jazdy przez las i w mieście. Zwłaszcza w mieście widoczność satelitów maleje na tyle, że często widać ich zbyt mało dla obliczenia pozycji. Ale i na zewnątrz pojazdu w mieście sytuacja jest niewiele lepsza. Na nowym komplecie baterii odbiornik pracuje kilkanaście godzin (GPS38 pobiera ok. 140mA). Rozrzutnością było by zasilanie w ten sposób w samochodzie; oczywiste jest, że należy zasilać go z gniazda zapalniczki zwłaszcza, że w odbiorniku przewidziano do tego odpowiednie gniazdo. W przypadku najtańszych odbiorników bez wyposażenia dodatkowego (GPS 38, GPS 12) są trudności: potrzebna jest nietypowa wtyczka i zasilacz 6V. Droższe odbiorniki (GPS12XL) są przewidziane do zasilania z napięć np. 10 - 40V. Najprostszym rozwiązaniem jest kupno odpowiedniego kabla od producenta, trochę to jednak kosztuje. Tańszym rozwiązaniem jest kupno wtyczki i dostosowanie zasilacza np. od telefonu komórkowego. Ja sam zrobiłem wtyczkę z kawałka plastiku i elementów złącza DB9, a zasilacz na układzie LM7806 umieściłem w obudowie handlowego wtyku do gniazda zapalniczki. Działa; kosztowało trochę pracy i prawie nic pieniędzy. Przestrzegam jednak przed eksperymentami - nieprawidłowe podłączenie może uszkodzić odbiornik. Potrzebny jest jeszcze uchwyt do przymocowania odbiornika na desce samochodu. Nie wiem czy można gdzieś taki kupić; podobnie jak kabel zasilający, uchwyt zrobiłem sam. Idealny do samochodu jest odbiornik z anteną zewnętrzną. GPS12XL z anteną GA27 na dachu, na uchwycie magnesowym to jest to! Współpraca GPS z PC GPS różnych firm w tym Garmin mają możliwość komunikacji z PC przez port RS232. Daje to możliwość przygotowania danych na PC i wpisania ich do GPS, odczytania danych z GPS, ich obróbki i archiwizowania na PC, oraz śledzenia na bieżąco położenia na ekranie komputera (notebooka) na tle mapy cyfrowej (program Autoroute, Quovadis,...). To ostatnie możliwe jest na łodzi lub w samochodzie, lecz chyba zbyt kłopotliwe na rowerze. Program Quovadis (obecnie zmienił nazwę na Touratech) Ten program spodobał mi się. Nawet w wersji demonstracyjnej 25 dniowej, po upływie tego czasu można bawić się mapami; nie można tylko łączyć się on line z Garminem. Warto też przejrzeć linki polecane przez autorów programu. Rysunek obok powstał przy pomocy programu Quovadis na bazie zeskanowanej mapy 1:100 000 i zapisu przejechanej trasy przez odbiornik GPS38 w czasach aktywności SA. Na zachód od Kolbuszowej jechałem tam i z powrotem tą samą trasą. Internet żyje, niektóre odsyłacze mogą być nieaktualne Programik Gardown Bardzo prosty i przydatny programik pod DOS do odczytywania i zapisywania danych z i do Garmina (przez port RS232). Program Madtran Pakiet programów w Basicu do przeliczania współrzędnych w różnych układach odniesienia. polskie firmy zajmujące się dziedziną GPS strona firmy Garmin inne strony z dziedziny GPS i map (biblia GPS!) Kategorie: ZiemianaukaNOAANASAciekawostkiSatelita Kilka miesięcy temu, satelita GOES-17 został wysłany na orbitę. Mimo niepokojącej awarii, z powodzeniem wykonał zdjęcie Ziemi w wyjątkowo wysokiej rozdzielczości. GOES-17 to najbardziej zaawansowany satelita pogodowy, który 1 marca trafił na orbitę okołoziemską, gdzie współpracuje z satelitą GOES-16 – ten z kolei pracuje już od 2016 roku. 20 maja, nowy satelita Amerykańskiej Narodowej Służby Oceanicznej i Meteorologicznej (NOAA) wykonał pierwsze zdjęcie naszej planety. GOES-17 prowadzi obserwacje Ziemi z wysokości niemal 36 tysięcy km. Z pomocą instrumentu ABI (Advanced Baseline Imager) nieustannie monitoruje zjawiska pogodowe i środowiskowe, takie jak huragany, burze, pożary, susze i mgły. Satelita skanuje planetę w 16 pasmach światła w zakresie widzialnym, w podczerwieni i bliskiej podczerwieni. Wizja artystyczna satelity GOES-17 - źródło: Lockheed Martin Naukowcy zaniepokojeni są awarią systemu chłodzenia instrumentu ABI. Usterka poważnie utrudnia pracę satelity i wymusiła wyłączenie aż 13 kanałów tego urządzenia. GOES-17 wciąż jest w fazie testów i mimo awarii, zdjęcie Ziemi posiada bardzo dobrą jakość. Zdjęcie w pełnej rozdzielczości można zobaczyć na stronie NOAA. Ocena: 11974 odsłony Stali czytelnicy naszej strony mieli już możliwość zauważyć, że istnieje więcej niż jedna „seria pomiarów średniej globalnej temperatury powierzchni Ziemi” (czytaj np. Zagadka trendu ocieplenia po 1998 roku). Część powstaje na podstawie pomiarów prowadzonych na powierzchni Ziemi (serie przygotowywane przez różne ośrodki różnią się metodami uśredniania, uzupełniania niedoborów danych itd.) a część – na podstawie pomiarów satelitarnych. Swego czasu niedopracowane wyniki pomiarów satelitarnych dostarczały pożywki osobom negującym dodatni trend zmian temperatury na Ziemi (Mit: Satelity nie pokazują ocieplania powierzchni Ziemi). Ponieważ temat ten regularnie powraca w dyskusjach, prezentujemy gościnnie tekst blogera Doskonale Szare, który wyjaśnia, co i jak właściwie mierzą satelity. Rysunek 1. Konstelacja satelitów GPS, które mogą być wykorzystywane do pomiarów temperatury atmosfery. Ilustrację zamieszczamy dzięki uprzejmości NASA. Metody teledetekcji Istnieje kilka metod zdalnego (tzw. teledetekcja) pomiaru temperatury atmosfery. Aktywne metody teledetekcji wykorzystują pomiar refrakcji (załamania) fal radiowych wysłanych przez statek kosmiczny przechodzących przez atmosferę. Technika ta z jest powodzeniem używana przy badaniu atmosfer innych planet, np. w ten właśnie sposób sonda New Horizons potwierdziła istnienie troposfery na Plutonie [1]. Na Ziemi meteorolodzy i klimatolodzy wykorzystują konstelację mniej więcej 30 satelitów sieci GPS, krążących wokół Ziemi na wysokości około 20 tys. kilometrów, z których emisji korzystają codziennie systemy nawigacji satelitarnej. Te same fale, po przejściu przez atmosferę, odbierane są przez krążące po niskiej orbicie amerykańsko-tajwańskie mikrosatelity programu COSMIC (a w przyszłości COSMIC-2, których wystrzelenie planowane jest na 2017 rok). Na podstawie zmian kierunku propagowania się fal radiowych w powietrzu możliwe jest odtworzenie jego temperatury albo wilgotności na ścieżce pomiędzy dwoma satelitami [2]. Wykorzystując naziemne staje odbioru sygnału GPS, możemy także określać profile temperatury i zawartości pary wodnej w atmosferze [3, 4]. Pasywne metody zdalnego pomiaru temperatury wykorzystują natomiast promieniowanie wysyłane przez samo powietrze – a dokładniej, mikrofale emitowane przez tlen. Ponieważ tlen jest dobrze wymieszany w atmosferze, a jego koncentracja zmienia się w znikomym zakresie, emisja promieniowania tlenu zależy głównie od jego temperatury. Starannie dobierając długość fali promieniowania rejestrowanego przez instrumenty satelity, można ograniczyć obserwacje tylko do określonego rejonu atmosfery. Każdy kanał instrumentu pomiarowego (długość rejestrowanej fali) ma swoją funkcję wagową. Funkcja wagowa mówi, na ile poszczególne piętra atmosfery „dokładają się” do wartości rejestrowanego sygnału, czyli na ile dobrze je „widać”. Przykładowo, kanał 5 radiometru AMSU-A mierzy promieniowanie o częstotliwości 53,6 GHz, którego emisja pochodzi w większości z najniższych warstw atmosfery – troposfery, z maksimum funkcji wagowej wypadającym w okolicach 4 km (patrz rysunek 2). Rysunek 2. Lewy panel: skąd się bierze funkcja wagowa. Im wyżej, tym mniej fal o wybranej częstości jest emitowane przez atmosferę (emisja) ale jednocześnie (w związku z rozrzedzaniem się powietrza) większa część promieniowania jest przepuszczana (transmisja). Funkcja wagowa pokazuje, jaka część fal o wybranej częstości dotrze do czujnika z poszczególnych poziomów atmosfery. Prawy panel: funkcje wagowe dla instrumentu AMSU-A. Fale o małych częstościach (niskie numery kanałów – kolorowe cyfry z prawej strony) docierające do czujnika satelity pochodzą przede wszystkim z niskich warstw atmosfery (tu są emitowane w ilości na tyle dużej, by przyćmić wyższe warstwy). Fale o większych częstościach (wyższe numery ), jeśli są emitowane przez niskie warstwy atmosfery, to w praktyce nie mają możliwości „przebić się” przez całą atmosferę. Jeśli więc przyrząd satelitarny je rejestruje, to w większości pochodzą one z wyższych partii atmosfery. (źródło ilustracji) Jak widać, fotony rejestrowane przez dany kanał radiometru mogą pochodzić z warstw różniących się wysokością o wiele kilometrów (a więc i temperaturą). Wynika z tego, że zmierzenie temperatury atmosfery metodami teledetekcyjnymi nie jest rzeczą prostą. Jest to klasyczny przykład problemu zwanego w nauce zagadnieniem odwrotnym: próby wyznaczenia szukanego parametru (tutaj: temperatury różnych warstw atmosfery) na podstawie pomiaru wielkości, która od niego zależy (tutaj: promieniowania docierającego do satelity przelatującego nad atmosferą). Innymi słowy: na podstawie zliczenia liczby fotonów o określonej energii „wpadających w oczko” satelity staramy się określić co i w jakich warunkach te fotony wyemitowało. Wiele zagadnień odwrotnych (w tym większość zagadnień w teledetekcji) jest tzw. problemami źle postawionymi. Nie, to nie jest niegrzeczna ocena pracy naukowców. To termin techniczny, oznaczający, że ten sam wynik pomiaru może pojawić się w różnych sytuacjach. W naszym przypadku różne parametry atmosfery (profile temperatury w połączeniu z profilami wilgotności i in.) mogą skutkować emisją promieniowania o nieodróżnialnych, z punktu widzenia czujnika wykonującego pomiar, własnościach. Pierwsze próby W 1990 roku dwóch naukowców NASA, Roy Spencer i John Christy, zaproponowało użycie pomiarów promieniowania mikrofalowego emitowanego przez atmosferę wykonanych przez radiometry MSU satelitów serii NOAA do zbadania globalnego ocieplenia, i przedstawili pierwszą satelitarną serię danych temperatury troposfery. Seria ta, popularnie określana akronimem UAH (od nazwy uniwersytetu gdzie zatrudniony był Christy – The University of Alabama in Huntsville), skonstruowana była w oparciu o tzw. temperaturę jasnościową (czyli temperaturę, jaką miałoby ciało doskonale czarne emitujące tyle samo promieniowania co obserwowany obiekt) zmierzoną na kanale 2 MSU (53,74 GHz). Dzisiaj, ćwierć wieku później, oprócz UAH podobne serie temperatury atmosfery opracowują również zespoły RSS i NOAA STAR. Oryginalnej serii Spencera i Christy’ego odpowiadają dane oznaczane skrótem TMT (temperature in the middle troposphere), które są kombinacją temperatury jasnościowej mierzonej przez stare radiometry MSU (kanał 2) oraz, od roku 1998, nowsze AMSU-A (kanał 5). Rysunek 3. Współczesny satelita NOAA-18 – również na jego pokładzie znajduje się przyrząd AMSU-A. Ilustrację zamieszczamy dzięki uprzejmości NOAA NESDIS Environmental Visualization Laboratory. W opublikowanym w tygodniku Science artykule [5] Spencer i Christy przekonywali, że precyzja pomiaru miesięcznych anomalii temperatury globalnej jest lepsza niż 0,01°C, a ze względu na możliwość obserwacji powierzchni całej planety oraz brak wpływu takich czynników jak np. efekt miejskiej wyspy ciepła, pomiary satelitarne znacznie lepiej nadają się do monitorowania globalnego ocieplenia niż tradycyjne analizy temperatury powierzchni globu. Wnioski wyciągnięte przez Spencera i Christy’ego wzbudziły pewien sceptycyzm, bo dane satelitarne nie wskazywały na wzrost temperatury, przewidywany przez teorię antropogecznicznego globalnego ocieplenia [6] i obserwowany w pomiarach na powierzchni Ziemi. Szybko okazało się, że rzeczywiście tezy na temat możliwości pomiarów satelitarnych były zdecydowanie zbyt optymistyczne, a w toku badań odkryto liczne problemy związane z metodami używanymi do wyznaczania trendów temperatur atmosfery. Nawet pobieżne omówienie tych badań to temat na grubą książkę, więc poniżej ograniczę się tylko do wymienienia najważniejszych problemów wraz z odniesieniem do podstawowej literatury przedmiotu. 1. „Temperatura troposfery” nie jest tylko temperaturą troposfery Jak napisałem wyżej, funkcja wagowa kanału 5 AMSU-A (oraz kanału 2 MSU) obejmuje większość troposfery, z maksimum wypadającym w jej niskich warstwach. Okazuje się jednak, że część emisji mierzonej przez radiometr w tym zakresie widma pochodzi też z wyższych warstw atmosfery, czyli stratosfery. Zgodnie z teoretycznymi przewidywaniami stratosfera powinna się oziębiać wskutek niszczenia warstwy ozonowej przez związki chlorowcopochodne („freony”) oraz zwiększającej się koncentracji dwutlenku węgla. Ponieważ radiometr nie może odróżnić, czy zarejestrowany foton został wyemitowany przez ocieplającą się troposferę, czy oziębiającą się stratosferę, oba efekty nakładają się na siebie, zaniżając mierzone trendy temperatury. W kolejnych wersjach swojej analizy temperatur (od wersji „B” z 1991 roku do wersji z 2013 roku) Spencer i Christy próbowali obejść ten problem konstruując „syntetyczny” kanał 2RT, później nazwany 2LT, a jeszcze później TLT [7]. Kanał ten powstał jako kombinacja pomiarów wykonanych pod różnymi kątami, przez co możliwe było lepsze wyizolowanie emisji pochodzącej z dolnych warstw troposfery, i jak się wydawało usunięcie emisji stratosferycznej. Rysunek 4. Geometria skanu wykonywanego przez radiometr AMSU. Źródło. Rysunek 5. Stary sposób konstrukcji serii temperatur dolnej troposfery w analizie UAH. Przy większym kącie pomiaru promieniowanie musi pokonać dłuższą drogę przez atmosferę, zatem opisująca je funkcja wagowa jest przesunięta ku wyższym warstwom atmosfery. Kanał 2RT/2LT/TLT powstawał poprzez odjęcie, z odpowiednimi wagami, temperatury jasnościowej zmierzonej przy większym kącie (pozycje 1, 2, 10 i 11 radiometru), od temperatury zmierzonej przy mniejszym kącie (bliżej nadiru, pozycje 3, 4, 8 i 9). Źródło. Metoda ta wprowadziła jednak kolejne problemy: znacząco zmniejszyła się precyzja pomiaru (zarówno jeśli chodzi o rozdzielczość przestrzenną, jak i stosunek sygnału do szumu w zmierzonej temperaturze jasnościowej), oraz powiększył się wkład emisji z powierzchni Ziemi w promieniowanie rejestrowane przez satelity. Szczególnie problematyczne okazały się być rejony polarne, gdzie dodatkowe zakłócenia powoduje obecność lodu [8]. W 2004 roku inny zespół naukowców zaproponował [9] alternatywną metodę konstrukcji syntetycznego kanału dla dolnej troposfery, opartą o kombinację dwóch różnych kanałów radiometru (2 i 4 MSU oraz 5 i 8 AMSU-A). Metoda ta została zastosowana w analizie RSS (firmy Remote Sensing Systems), a od ubiegłego roku zaczęli jej używać także Spencer i Christy (od wersji analizy UAH [10]). Co charakterystyczne, zespół NOAA STAR, który też publikuje własną niezależną analizę danych satelitarnych, z opracowywania takiego syntetycznego kanału „dolnej troposfery” zrezygnował w ogóle, dochodząc do wniosku że jego przydatność jest niewielka w obliczu niepewności pomiarowych, jakimi byłby obciążony. 2. Serie pomiarowe nie są homogeniczne … czyli wykorzystują dane różnego pochodzenia. Konstrukcja serii temperatur o długości wystarczającej by była przydatna w badaniach nad klimatem (czyli 20-30 lat) wymaga użycia danych z kilkunastu różnych satelitów, pracujących w różnym czasie i z różnym oprzyrządowaniem na pokładzie. Jak wspomniałem, analizy UAH, RSS i NOAA STAR używają zarówno pomiarów wykonanych przez starszy typ czterokanałowych radiometrów MSU, jak i nowszych, wciąż wykorzystywanych radiometrów AMSU. Ale nawet instrumenty tego samego typu, kalibrowane na Ziemi według tych samych wytycznych, zmieniają trochę parametry podczas montażu satelity i później w trakcie samej misji obserwacyjnej satelity, zależąc między innymi od jego własnej temperatury. Rysunek 6. Satelita NOAA w laboratorium. Zdjęcie zamieszczamy dzięki uprzejmości Lockheed Martin i NASA. Na orbicie możliwości powtórnej kalibracji instrumentów satelity są ograniczone. W przypadku radiometrów pomiary temperatury jasnościowej atmosfery ziemskiej mogą być porównywane z temperaturą przestrzeni kosmicznej (czyli temperatury mikrofalowego promieniowania szczątkowego Wielkiego Wybuchu, wynoszącej 2,73 K), oraz temperaturą specjalnej płytki (mierzonej innymi metodami), jednak ekstrapolacja nieliniowej zależności pomiędzy rzeczywiście mierzonym przez radiometr sygnałem (przetworzoną na ciąg cyfr zmianą napięcia) a temperaturą, w oparciu o tylko dwa punkty danych nie jest wcale taka prosta. Przykładowo, jedną z nierozstrzygniętych kontrowersji jest poprawka zastosowana do kalibracji pomiarów satelity NOAA-9, która zdaniem klimatologów z University of Washington została przez Spencera i Christy’ego zastosowana niewłaściwie [11]. Kilka lat temu naukowcy z NOAA znaleźli sprytny sposób na wzajemną kalibrację instrumentów różnych satelitów, którym zdarzało się przelatywać w tym samym czasie nad tym samym punktem (co w przypadku orbit polarnych zdarza się w okolicach biegunów), i ten rodzaj kalibracji jest obecnie używany w analizie NOAA STAR [12]. Kolejnym bardzo poważnym problemem jest dryf orbit. Satelity meteorologiczne (a także szpiegowskie) zwykle krążą po orbitach polarnych, na których przelatują nad tymi samymi punktami na powierzchni Ziemi o tej samej godzinie czasu słonecznego. Można zrozumieć to oglądając poniższą animację: W ciągu kilku-kilkunastu lat przebywania satelity na orbicie zwykle powoli dryfuje on w kierunku wschodnim albo zachodnim, przez co przelatuje on nad tym samym punktem w innym czasie (później albo wcześniej). Ponieważ temperatura atmosfery zmienia się w cyklu dobowym, zatem dwa pomiary wykonane w odstępie 10 lat, jeden na przykład wczesnym popołudniem, a drugi na przykład wieczorem, oprócz długoterminowego trendu klimatycznego będą też zawierać, zwykle znacznie większy, wkład dobowej zmiany temperatury. Efekt dryfu orbity trzeba zatem uwzględnić i jakoś skompensować. Niestety, pierwsze wersje analizy Spencera i Christy’ego dryf ignorowały, a wersje późniejsze stosowały poprawkę dobową z niewłaściwym znakiem, przez co pogłębiały istnienie błędów systematycznych w trendach temperatur troposfery [13]. 3. Temperatura troposfery nie jest tylko temperaturą powietrza. Teledetekcja temperatur oparta o promieniowanie mikrofalowe wydawała się atrakcyjna również dlatego, że pozwalała na badanie atmosfery niezależnie od obecności chmur, które zwykle zasłaniają dużą część powierzchni planety. Spencer i Christy w 1990 roku szacowali, że wpływ emisji z innych niż tlen składników atmosfery, oraz refrakcji mikrofal na cząsteczkach wody w chmurach i deszczu jest mniejszy niż 0,01°C w przypadku globalnych anomalii miesięcznych. Ostatnie badania [14] sugerują, że ignorowanie obecności chmur zaniża trendy zmian temperatur troposfery o 20-30%. Rysunek 7: Średnie zachmurzenie w grudniu 2015 na podstawie pomiarów satelitarnych (0 oznacza brak chmur, 1 – pełne zachmurzenie). Ilustrację zamieszczamy dzięki uprzejmości GSFC/NASA. Wynika z tego, że określenie temperatury troposfery nie jest takie proste, jak się kiedyś wydawało, a satelitarne serie temperatury nie są lepszym wskaźnikiem globalnego ocieplenia niż zwykłe analizy temperatury powierzchni Ziemi, oparte o pomiary stacji meteorologicznych i temperatury oceanów. W 37-letniej serii temperatur TMT, opracowanej na podstawie tych samych danych wejściowych, trend liniowy wynosi zaledwie 0,07°C na dekadę w analizie UAH, 0,08°C na dekadę w analizie RSS, i 0,12°C na dekadę w analizie NOAA STAR – a jest to teoretycznie najprostszy produkt satelitarny, wykorzystujący tylko jeden kanał radiometru! Pokazuje to, że bez wyjaśnienia różnic pomiędzy różnymi analizami temperatur atmosfery trudno jest używać ich jako argumentu, że się ona nie ociepla (albo że się ociepla „mniej niż oczekiwano”). Co z radiosondami? Radiosondy to małe urządzenia zawierające przyrządy mierzące ciśnienie, temperaturę, wilgotność i inne parametry atmosferyczne, unoszone w powietrzu przez balony meteorologiczne. Pomiary wykonywane w miarę wznoszenia i lotu balonu, aż do momentu jego pęknięcia w górnych warstwach atmosfery, są przesyłane drogą radiową do stacji naziemnych. Radiosondy światowej sieci pomiarów meteorologicznych WMO są wypuszczane w tym samym czasie, dwa razy na dobę (w okolicy północy i południa czasu Greenwich), z ponad 600 stacji na całym świecie, a uzyskane w ten sposób dane o stanie globalnej atmosfery zasilają modele numeryczne prognozujące pogodę. Rysunek 8. Stacje sondowania atmosfery na świecie. Ilustrację zamieszczamy dzięki uprzejmości NOAA. Radiosondy umożliwiają zbadanie temperatury atmosfery z precyzją niemożliwą do uzyskania innymi metodami, jednak mają też i swoje wady. Globalna sieć pomiarowa jest z konieczności ograniczona głównie do lądów (oraz nielicznych oceanicznych wysepek), jej utrzymanie jest stosunkowo kosztowne, i podobnie jak w przypadku innych pomiarów wykonywanych w konkretnych lokalizacjach, dane zbierane przez radiosondy wymagają homogenizacji. Mierzony przez radiosondy od 1958 roku długoterminowy trend temperatury globalnej wynosi 0,14°C na dekadę [15]. W tropikach jest nawet wyższy, i wynosi 0,25°C na dekadę [16]. Na szybkie ocieplanie się tropikalnej troposfery wskazuje również niedawno opublikowana analiza prędkości wiatrów [17]. Rysunek 9. Różne analizy temperatury troposfery. Kolor czarny: RSS, wraz z niepewnościami (100 realizacji wiązki, oznaczone kolorem szarym); zielony: UAH; niebieski: NOAA STAR; czerwony: globalna analiza temperatur mierzonych przez wynoszone przez balony radiosondy RATPAC-A (poziom baryczny 500hPa). Nie ma wątpliwości co do ocieplenie klimatu Niezależnie od przyczyn rozbieżności pomiędzy różnymi analizami temperatur troposfery, samo ocieplenie klimatu nie jest już od dawna przyczyną kontrowersji w środowisku naukowym. O ile w 1990 roku nie były kompletnie nieprawdopodobne sugestie Christy’ego i Spencera, że analizy temperatur oparte o pomiary stacji meteorologicznych zawierają nieuwzględnione, duże błędy systematyczne (np. efekt miejskiej wyspy ciepła); to dzisiaj, ćwierć wieku później, nie ma wątpliwości że globalne ocieplenie nie jest tylko artefaktem pomiarowym. Dane dotyczące ocieplenia na powierzchni planety są obecnie precyzyjniejsze, niż analizy satelitarne. Łatwo może to zobrazować rozrzut wartości różnych serii temperatur, opracowywanych przez różne, niezależne zespoły naukowców: Rysunek 10. Kolor niebieski – różne analizy temperatur powierzchni (NASA, NCEI, MetOffice i BEST), kolor szary – analizy temperatur troposfery (UAH, RSS, NOAA STAR i RATPAC-A). O ociepleniu planety wiemy zresztą nie tylko dzięki stacjom meteorologicznym, ale także i pomiarom temperatur oceanów wykonanych przez statki i boje oceanograficzne; z szacunków tempa regresji lodowców; pomiarów temperatur podpowierzchniowych w odwiertach geologicznych i zmian temperatur wiecznej zmarzliny; analizom zmian zachowań sezonowych, zasięgów występowania różnych gatunków roślin i zwierząt oraz wielu innych niezależnych obserwacji. Nie ma też wątpliwości co do przyczyn ocieplenia Obserwowane zmiany klimatu są spójne z przewidywaniami teoretycznymi opartymi o znane od dziesięcioleci prawa fizyki. Zgodnie z tymi przewidywaniami, zwiększona koncentracja gazów cieplarnianych powinna doprowadzić do wzmocnienia efektu cieplarnianego, i ocieplenie powierzchni planety. Inne, teoretycznie możliwe przyczyny zmian klimatu (np. wahania aktywności słonecznej) pozostają wykluczone przez dane obserwacyjne. [1] The Pluto system: Initial results from its exploration by New Horizons [2] The COSMIC/FORMOSAT-3 Mission: Early Results [3] Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System [4] Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN from 2002 to 2013 [5] Precise Monitoring of Global Temperature Trends from Satellites [6] Dzisiaj wiemy, że główną tego przyczyną była zbyt krótka, bo zaledwie 10-letnia, seria obserwacyjna którą dysponowali wtedy Spencer i Christy. Ze względu na relatywnie dużą, w stosunku do wartości (ówczesnego) trendu, zmienność międzymiesięczną i międzyroczną temperatury globalnej, w żadnej serii danych (czy to satelitarnych, czy to naziemnych) nie da się wyznaczyć istotnego statystycznie trendu dla okresu 1979-1988. Późniejsze, dłuższe satelitarne serie temperatur troposfery opracowane przez Spencera i Christy’ego też nie wskazywały ocieplenia, jednak tutaj większą rolę odegrały wprowadzone przez nich błędy w analizie danych. [7] Precision and Radiosonde Validation of Satellite Gridpoint Temperature Anomalies. Part II: A Tropospheric Retrieval and Trends during 1979–90 [8] Evidence of possible sea-ice influence on Microwave Sounding Unit tropospheric temperature trends in polar regions [9] Satellite-derived vertical dependence of tropical tropospheric temperature trends; Contribution of stratospheric cooling to satellite-inferred tropospheric temperature trends [10] Prace nad wersją 6 serii UAH rozpoczęła się w 2006 roku, niedługo po odkryciu błędów w zastosowaniu poprawek dobowych (o czym niżej), i została ona w końcu „opublikowana” na blogu Roya Spencera w roku 2015, z zastrzeżeniem, że to dopiero wersja „beta”. Nie wiadomo, kiedy i czy w ogóle planowana jest publikacja opisu metod analizy w recenzowanym czasopiśmie naukowym. [11] A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit [12] Predicting Simultaneous Nadir Overpasses among Polar-Orbiting Meteorological Satellites for the Intersatellite Calibration of Radiometers; Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses; Intersatellite calibration of AMSU-A observations for weather and climate applications [13] The Effect of Diurnal Correction on Satellite-Derived Lower Tropospheric Temperature [14] „Uncertainty of AMSU-A derived temperature trends in relationship with clouds and precipitation over ocean; 30-Year atmospheric temperature record derived by one-dimensional variational data assimilation of MSU/AMSU-A observations; Trends of MSU Brightness Temperature in the Middle Troposphere Simulated by CMIP5 Models and Their Sensitivity to Cloud Liquid Water [15] BAMS State of the Climate in 2014, Global Climate [16] Atmospheric changes through 2012 as shown by iteratively homogenized radiosonde temperature and wind data (IUKv2) [17] New estimates of tropical mean temperature trend profiles from zonal mean historical radiosonde and pilot balloon wind shear observations Na poziomie uniwersalnym przestrzeń kosmiczna jest dość szeroka i nie jest znana konkretna jej ilość. Satelity i wszelkiego rodzaju ciał niebieskich. Naturalnych satelitów może być o wiele więcej, niż sobie wyobrażają astronomowie. W rzeczywistości w tym samym obserwowalnym wszechświecie liczba istniejących satelitów nie jest znana z całą pewnością. Ponieważ obserwacja nie wystarczy, ale prawdziwe badanie ciał kosmicznych. Wiele satelitów można zobaczyć jak każdy inny rodzaj ciało niebieskie a jednocześnie wiedząc, że są satelitami w kosmosie. Jest to rodzaj satelity uniwersalnego, jest to satelita naturalny, o którym temat będzie później rozwijany. Z drugiej strony, sztuczne satelity też mają swoje działanie i tutaj wyjaśnimy, jakie znaczenie ma każdy z nich. Wskaźnik1 Po pierwsze: naturalne Naturalne satelity Układu Nazwy Jaka jest orbita tych satelitów? Po pierwsze: satelity Po drugie: satelity Po trzecie: satelity Po czwarte: satelity satelity orbitujące satelity2 Dwa: sztuczne epoka Rodzaje sztucznych Klasyfikacja satelitów według ich konkretnego Klasyfikacja satelitów według typu orbity, którą Typy orbit satelitów3 Rosja i Ekwador wystrzeliwują sztuczne Nowy rosyjski rekord4 Znaczenie Znaczenie naturalnych Znaczenie sztucznych satelitów Po pierwsze: naturalne satelity L naturalne satelity Są to ciała niebieskie krążące wokół planety. Satelita jest zwykle mniejszy i towarzyszy planecie na orbicie wokół gwiazdy macierzystej. Termin „naturalny satelita” przeciwstawia się terminowi sztucznego satelity, który jest obiektem, który krąży wokół Ziemi, Księżyca lub niektórych planet i został wyprodukowany przez człowieka. Naszym satelitą jest Księżyc i jako jedyny towarzyszy Ziemi. Ten satelita ma masę około 1/81 masy Ziemi. Z drugiej strony jest binarny układ planet, który jest realizowany przez satelitę i planetę, wokół której krąży; lub dwóch planet krążących razem. W tym kontekście odnosimy się do przypadku Plutona i jego satelity Charona. W celu dokładnego określenia, co system binarny, dwa obiekty muszą mieć podobną masę, a nie obiekt nadrzędny i satelita. Zwykłym kryterium uznania obiektu za satelitę jest to, że środek masy układu utworzonego przez te dwa obiekty znajduje się wewnątrz obiektu podstawowego. Najwyższy punkt na orbicie satelity jest znany jako apocentrum. Aby zrozumieć ten punkt, konieczne jest konceptualizowanie, że konkretnie w dziedzinie astronomii i w ramach parametrów charakteryzujących orbitę, apocentrum Jest to punkt trajektorii satelity znajdujący się w maksymalnej odległości od gwiazdy, do której krąży. W ten sposób nieco więcej wiadomo o satelitach i ich lokalizacji. Chociaż konieczne jest również poznanie innych podstawowych ich aspektów. Naturalne satelity Układu Słonecznego W Układzie Słonecznym znajduje się łącznie 178 satelitów, które zostały potwierdzone przez NASA, zarówno na planetach, jak i planetach karłowatych. Planety Merkury i Wenus nie mają brak naturalnego satelity, podobnie jak planeta karłowata Ceres. Kolejne misje bezzałogowe od czasu do czasu zwiększały te liczby, odkrywając nowe satelity i mogą nadal to robić w przyszłości. Każdy satelita ma inny rozmiar, w naszym Układzie Słonecznym. Siedem największych naturalnych satelitów w Układzie Słonecznym (o średnicy ponad 2500 km) to cztery: Jowisz Galilejczycy — Ganimedes, Callisto, Io i Europa — satelita Saturna Tytan, księżyc Ziemi i naturalny satelita schwytany Neptun Tryton . Ze swojej strony ten ostatni Tryton, jest najmniejszą z tej grupy. Ten satelita ma większą masę niż wszystkie inne mniejsze naturalne satelity razem wzięte. Podobnie w następnej wielkości grupie dziewięciu naturalnych satelitów, o średnicy od 1000 do 1600 km — Titanii, Oberon, Rhea, Iapetus, Charon, Ariel, Umbriel, Dione i Tethys — najmniejszy, Tethys, ma większą masę niż wszystkie inne pozostałe mniejsze satelity łącznie. Oprócz naturalnych satelitów planet istnieje również ponad 80 znane naturalne satelity Małe planety, asteroidy i inne mniejsze ciała Układu Słonecznego. Niektóre badania szacują, że nawet 15% wszystkich obiektów transneptunowych może mieć satelity. te obiekty transneptunowe lub trans-Neptunian, są to dowolne obiekty znajdujące się w Układzie Słonecznym. Jej orbita znajduje się częściowo lub całkowicie poza orbitą planety Neptun. Z tego powodu nazywa się ich trans-Neptunami. Niektóre specyficzne podpodziały tej przestrzeni nazywane są pasem Kuipera i chmurą Oorta. Nazwy satelitów W ciągu nasz system Solar, na planetach znajdują się różne satelity. Nasz jest tylko jeden: Księżyc. Nazwy tych satelitów zostały wybrane z imion postaci w mitologii. Wyłączone są tylko nazwy satelitów planety Uran. Satelity te noszą imiona postaci z różnych dzieł pisarza Williama Szekspira. Satelity innych planet są powszechnie nazywane księżycami. Jednak Księżyc jest ogólnie satelitą naszej planety Ziemi to są satelity, a nie księżyce. Przykładem najlepszego sposobu na powiedzenie tego jest wspomnienie: „cztery satelity Jowisza”, ale co za tym idzie, wiele osób zwykle mówi: „cztery księżyce Jowisza”. Chociaż rozumie się, że tak naprawdę odnoszą się do satelitów tej planety. Inny sposób, w jaki a kosmiczna gwiazda, jest to, że każde naturalne ciało, które krąży wokół ciała niebieskiego, nazywane jest naturalnym satelitą lub księżycem. Dzieje się tak, nawet jeśli nie jest to planeta, jak w przypadku asteroidalnego satelity Dactyl, który krąży wokół asteroidy (243) Ida itp. Te ciała kosmiczne mają inne nazwy i każde z nich znajduje się w katalogu astronomicznym. Jednak w niektórych przypadkach naukowcy mylą się również w kategorii, w której ich umieszczają. Jaka jest orbita tych satelitów? Ponieważ układ planet, który można zbadać bardziej szczegółowo, to Układ Słoneczny, ponieważ jest on nasz, astronomowie dokonali klasyfikacji w Układzie Słonecznym w odniesieniu do orbit satelitów. Są to satelity pasterskie, trojańskie, koorbitalne i asteroidalne. Każdy z nich jest oceniany w odniesieniu do planety, na której krążą. Klasyfikacja tych satelitów jest następująca: Po pierwsze: satelity duszpasterskie Satelity nazywane są tak, gdy utrzymują w miejscu pierścień Jowisza, Saturna, Urana lub Neptuna. Po drugie: satelity trojańskie Dzieje się tak, gdy planeta i główny satelita mają Punkty Lagrange'a Inne satelity L4 i L5. Po trzecie: satelity koorbitalne Dzieje się tak, gdy obracają się po tej samej orbicie. ten satelity trojańskie są współorbitalne, podobnie jak satelity Saturna Janusa i Epimeteusza, które są mniej odległe na swoich orbitach niż ich rozmiar i zamiast zderzać się, zamieniają swoje orbity. Po czwarte: satelity asteroid W tym momencie należy zauważyć, że niektóre asteroidy mają wokół siebie satelity, takie jak Ida i jej satelita Dactyl. 10 sierpnia 2005 r. ogłoszono odkrycie asteroidy Silvia, wokół której krążą dwa satelity. Romulus i RemusRomulus, pierwszy satelita, został odkryty 18 lutego 2001 roku przez 10-metrowy teleskop WM Keck II na Mauna Kea. Ten satelita Romulus ma 18 km średnicy i orbitę. Znajduje się w odległości 1370 km od Silvii i zajmuje 87,6 godziny. Z drugiej strony Remo jest drugim satelitą. Satelita ten jest znacznie mniejszy niż Romulus, ponieważ ma średnicę 7 km i obraca się w odległości 710 km. Ponadto ukończenie zajmuje mniej czasu. Łącznie 33 godziny na ukończenie orbita wokół Sylwii. wszystkie naturalne satelity podążaj za jego orbitą z powodu siły grawitacji. To jest powód, dla którego satelita wpływa również na ruch głównego obiektu. Było to zjawisko, które w niektórych przypadkach pozwoliło na odkrycie planet pozasłonecznych. satelity orbitujące satelity Zjawisko we Wszechświecie, które pozwala naturalnym satelitom krążyć wokół naturalnego satelity innego ciała, nie zostało jeszcze poznane. W większości przypadków skutki pływowe pierwiastka powodują, że taki system jest niestabilny. Jednak obliczenia przeprowadzone po ostatnim wykryciu wykryły możliwy układ pierścieni Rhea. Chodzi o naturalny satelita Saturna. Naukowcy wskazują, że satelity krążące wokół Rhea miałyby stabilne orbity. Ponadto uważa się, że podejrzane pierścienie byłyby wąskie. Takie zjawisko jest zwykle związane z satelitami pasterskimi. Z drugiej strony, konkretne zdjęcia wykonane przez sonda kosmiczna Cassini nie wykryli żadnego pierścienia związanego z również, że Iapetus, satelita Saturna, posiadał w przeszłości podsatelitę; jest to jedna z kilku hipotez, które zostały zaproponowane w celu wyjaśnienia jego równikowego grzbietu. Dwa: sztuczne satelity W przeciwieństwie do satelitów naturalnych, satelity sztuczne są urządzeniem wysyłanym przez kosmiczny start. Ten satelita pozostaje na orbicie wokół ciał w kosmosie. ten sztuczne satelity krążą również wokół naturalnych satelitów, asteroid lub planet. Po okresie użytkowania sztuczne satelity mogą pozostać na orbicie jako śmieci kosmiczne lub mogą się rozpaść, ponownie wchodząc w atmosferę. Dzieje się tak tylko wtedy, gdy jego orbita jest niska. Poprzez opowiadanie Edwarda Everetta Hale'a The Brick Moon (ceglany księżyc), który ukazał się w serialu w Atlantic Monthly w 1869 roku, jest pierwszym znanym dziełem beletrystycznym opisującym, w jaki sposób sztuczny satelita jest wystrzeliwany na orbitę okołoziemską. Ten sam pomysł pojawił się ponownie w „Pięćset milionach rozpoczętych” z 1879 r., dziele napisanym przez Julesa Verne'a. W przeciwieństwie do pracy The Brick Moon, książki zatytułowanej pięćset milionów autora Julesa Verne'a opisuje niezamierzony wynik złoczyńcy. Robi to, wspominając w swojej sztuce, że złoczyńca postanawia zbudować gigantyczny kawałek artylerii, aby zniszczyć swoich wrogów. Daje to pociskowi większą prędkość niż zamierzona, co pozostawia go na orbicie jak sztuczny satelita. Ale narodziny sztucznych satelitów rozpoczęły się podczas zimnej wojny między Stanami Zjednoczonymi a Związkiem Radzieckim. Celem tej wojny było podbicie kosmosu. W maju 1946 r Projekt RAND przedstawił raport Wstępny projekt eksperymentalnego statku kosmicznego okrążającego świat. To jest wstępny projekt eksperymentalnego statku kosmicznego na orbicie. epoka kosmiczna Wstępny projekt eksperymentalnego statku kosmicznego na orbicie powiedział, że „A pojazd satelitarny przy odpowiednim oprzyrządowaniu może być jednym z najpotężniejszych narzędzi naukowych XX wieku. Realizacja statku satelitarnego wywołałaby reperkusje porównywalne z wybuchem bomby atomowej...». Jednak epoka kosmiczna rozpoczął się w 1946 roku, kiedy naukowcy zaczęli wykorzystywać przechwycone niemieckie rakiety V-2 do pomiarów tego czasu naukowcy używali balonów osiągających wysokość 30 km i fal radiowych do badania jonosfery. W latach 1946-1952 do badań w górnych warstwach atmosfery wykorzystywano rakiety V-2 i Aerobee. To jest dozwolone pomiary ciśnienia, gęstość i temperatura do wysokości 200 km. Stany Zjednoczone rozważały wystrzelenie satelitów orbitalnych od 1945 roku pod nadzorem Biura Aeronautyki Marynarki Wojennej. Oprócz tego projekt RAND firmy Siły Powietrzne przedstawił swój raport, ale satelita nie był uważany za potencjalną broń wojskową. Stało się tak, że powstało raczej narzędzie naukowe, polityczne i propagandowe. W 1954 roku Sekretarz Obrony stwierdził: „Nie znam żadnego amerykańskiego programu satelitarnego”. Rodzaje sztucznych satelitów Tak jak naturalne satelity mają typologię i klasyfikację; również sztuczne satelity mają swoje typy. Każdy z nich badał i studiował od historii po dzień dzisiejszy. Sztuczne satelity można podzielić na dwie duże kategorie: Satelity obserwacyjne i satelity komunikacyjne. Ponieważ są to funkcje, które mają, gdy są wysyłane w kosmos. L satelity obserwacyjneSą wśród nich wszyscy, którzy zbierają dane i wysyłają je na Ziemię w celu wykorzystania. Duża liczba satelitów w tej kategorii wykonuje zdjęcia samej planety Ziemi. Przedstawiają również ciało, na którym krążą, przy użyciu różnych długości fal. Poza tym obejmują one bardzo różnorodne pola obserwacji, takie jak fotografia czy obserwacja astronomiczna, detektory środowiska kosmicznego (promienie kosmiczne, wiatr słoneczny, magnetyzm) i inne. Z szacunkiem do satelity komunikacyjneNależą do nich te używane do retransmisji sygnałów z jednego punktu na Ziemi do drugiego. Są satelitami, które ułatwiają komunikację i rozpowszechnianie wiadomości. Jest to najbardziej komercyjne wykorzystanie satelitów i obejmuje zasięg radia, telewizji, Internetu, telefonii i innych zastosowań. Klasyfikacja satelitów według ich konkretnego przeznaczenia Wspomniane wcześniej satelity komunikacyjne. Są to pracownicy do prowadzenia telekomunikacji (radio, telewizja, telefonia). Satelity meteorologiczne, to takie, które służą do obserwacji środowiska, meteorologii, kartografii bez celów wojskowych. Chociaż są one używane głównie do rejestrowania pogody i klimatu Ziemi. satelity nawigacyjne, to te, które wykorzystują sygnały do ​​poznania dokładnej pozycji odbiornika na ziemi, takie jak systemy GPS, GLONASS i Galileo. satelity rozpoznawcze, są popularnie znane jako satelity szpiegowskie. Są to satelity obserwacyjne lub komunikacyjne, wykorzystywane przez organizacje wojskowe lub wywiadowcze. Większość rządów utrzymuje w tajemnicy informacje ze swoich satelitów. satelity astronomiczne, to te satelity, które są używane do obserwacji planet, galaktyk i innych obiektów astronomicznych. satelity zasilane energią słoneczną, są propozycją satelitów na ekscentrycznej orbicie, które wysyłają zebraną energię słoneczną do anten na Ziemi jako źródło zasilania. stacje kosmiczne, są to konstrukcje, które zostały zaprojektowane tak, aby ludzie mogli żyć w kosmosie. Stacja kosmiczna różni się od innych załogowych statków kosmicznych tym, że nie ma napędu ani możliwości lądowania, wykorzystując inne pojazdy do transportu do i ze stacji. Klasyfikacja satelitów według typu orbity, którą opisują Wśród ogromnej różnorodności możliwych orbit orbity sztucznych satelitów Ziemi są generalnie klasyfikowane według ich wysokości. Wśród nich opisano: Niska orbita okołoziemska (LEO): To te satelity, które mają niską orbitę. Znajdują się one na wysokości od 700 do 1400 km i mają okres orbitalny od 80 do 150 minut. Średnia orbita Ziemi (MEO): Jest to średnia orbita obrócona od 9 000 do 20 000 km i ma okres orbitalny od 10 do 14 godzin. Jest również znany jako pośrednia orbita kołowa. Orbita geostacjonarna (GEO): To satelita, którego orbita znajduje się na wysokości 35 786 km nad równikiem ziemskim. Ma 24-godzinny okres orbitalny, zawsze pozostając w tym samym miejscu na Ziemi. Typy orbit satelitów Oprócz tego konieczne jest poznanie rodzaje orbit wokół których krążą w kosmosie satelity. Orbity te mogą być zależne od wysokości, gwiazdy, do której krążą, mimośrodu, nachylenia i synchronii. Nie jest jednak wykluczone, że istnieją inne typy orbit, z tego powodu zostaną one również wymienione poniżej. Orbity satelitów według wysokości niska orbita okołoziemska (LEO): orbita geocentryczna na wysokości od 0 do 2000 km. oznacza orbitę okołoziemską (MEO): orbita geocentryczna o wysokości od 2000 km do limitu orbity geosynchronicznej 35 786 km. Jest również znany jako pośrednia orbita kołowa. wysoka orbita okołoziemska (HEO): orbita geocentryczna nad orbitą geosynchroniczną o długości 35 786 km; znana również jako orbita wysoce ekscentryczna lub orbita wysoce eliptyczna. Orbity satelitów przy gwiazdach, wokół których krążą orbita areocentryczna: orbita wokół Marsa. Orbita Molniyi: orbita używana przez ZSRR, a obecnie Rosję, aby całkowicie pokryć swoje terytorium daleko na północ od planety. orbita geocentryczna: orbita wokół Ziemi. Na orbicie Ziemi krąży około 2465 sztucznych satelitów. heliocentryczna orbita: orbita wokół Słońca W Układzie Słonecznym planety, komety i asteroidy krążą po tej orbicie. Sztuczny satelita Kepler porusza się po heliocentrycznej orbicie. Orbity satelitów według ekscentryczności orbita kołowa: orbita, której mimośród wynosi zero, a jej tor jest kołem. Orbita transferowa Hohmanna: Manewr orbitalny, który przenosi statek z jednej orbity kołowej na drugą. orbita eliptyczna: orbita, której mimośród jest większy od zera, ale mniejszy niż jeden i którego tor ma kształt elipsy. Orbita Molniyi: orbita bardzo ekscentryczna o nachyleniu 63,4º i okresie orbitalnym równym połowie dnia syderycznego (około dwunastu godzin). Geostacjonarna orbita transferowa: orbita eliptyczna, której perygeum jest wysokością niskiej orbity okołoziemskiej, a apogeum to orbita geostacjonarna. Geosynchroniczna orbita transferowa: orbita eliptyczna, której perygeum jest wysokością niskiej orbity okołoziemskiej, a apogeum to orbita geosynchroniczna. orbita tundry: orbita wysoce ekscentryczna o nachyleniu 63,4º i okresie orbitalnym równym jednemu dniu gwiezdnemu (około 24 godzin). orbita hiperboliczna: orbita, której mimośród jest większy niż jeden. Na takich orbitach statek kosmiczny unika przyciągania grawitacyjnego i kontynuuje swój lot w nieskończoność. orbita paraboliczna: orbita, której mimośród jest równy jeden. Na tych orbitach prędkość jest równa prędkości ucieczki. przechwyć orbitę: orbita paraboliczna o dużej prędkości, na której obiekt zbliża się do planety. ucieczka z orbity: orbita paraboliczna o dużej prędkości, na której obiekt oddala się od planety. Orbity satelitów według inklinacji nachylona orbita: orbita, której nachylenie orbity nie jest zerowe. orbita polarna: orbita przechodząca nad biegunami planety. Dlatego ma nachylenie 90º lub w przybliżeniu. Orbita biegunowa synchroniczna ze słońcem: Orbita zbliżona do bieguna, która przechodzi przez równik Ziemi w tym samym czasie lokalnym przy każdym przejściu. Zsynchronizowane orbity satelitów orbita areostacjonarna: kołowa orbita areosynchroniczna na płaszczyźnie równikowej na wysokości około 17000 km. Podobny do orbity geostacjonarnej, ale na Marsie. Orbita aerosynchroniczna: synchroniczna orbita wokół planety Mars z okresem orbitalnym równym gwiezdnemu dniu Marsa, 24,6229 godzin. orbita geosynchroniczna: orbita na wysokości 35 768 km. Te satelity śledziłyby na niebie analemę. orbita cmentarza: orbita kilkaset kilometrów powyżej orbity geosynchronicznej, na której satelity są przemieszczane, gdy kończy się ich żywotność. orbita geostacjonarna: orbita geosynchroniczna o zerowym nachyleniu. Dla obserwatora na ziemi satelita wydawałby się stałym punktem na niebie. Orbita synchroniczna ze słońcem: heliocentryczna orbita wokół Słońca, gdzie okres orbitalny satelity jest równy okresowi obrotu Słońca i znajduje się na około 0,1628 orbita półsynchroniczna: orbita na wysokości około 12 544 km i okres orbitalny około 12 godzin. orbita synchroniczna: orbita, na której satelita ma okres orbitalny równy okresowi obrotu głównego obiektu i w tym samym kierunku. Z ziemi satelita śledziłby na niebie analemę. Orbity satelitów inne orbity orbita podkowa: orbita, na której obserwator wydaje się widzieć, że krąży wokół planety, ale w rzeczywistości współorbituje z planetą. Przykładem jest asteroida (3753) Cruithne. Punkt Lagrange'a: Satelity mogą również orbitować nad tymi pozycjami. Rosja i Ekwador wystrzeliwują sztuczne satelity Po trzech latach pracy Rosja i Ekwador ostatecznie decydują się na wystrzelenie w kosmos sztucznych satelitów. W sumie wystrzelono 72 satelity, w tym na poziomie Ameryki Łacińskiej satelita o nazwie Ekwador UTE-UGUS. To pierwszy satelita zbudowany przez ekwadorski uniwersytet i wystrzelony w połowie bieżącego miesiąca (lipiec 2017). Z drugiej strony, ze stacji kosmicznej Bajkonur wystrzelono na orbitę rakietę która zawiera 72 satelity o różnym przeznaczeniu. Rosyjska Federalna Agencja Kosmiczna Roscosmos poinformowała w piątek, że ze stacji kosmicznej Bajkonur Rakieta który zawiera 72 satelity o różnym przeznaczeniu. Wracając do najbardziej znanego satelity w Ameryce Łacińskiej, warto zwrócić uwagę na ekwadorski UTE-UGUS. To jest monitorowanie nanosatelity. Ma szerokość, długość i grubość 100 milimetrów. Ponadto waży 1 kilogram i został opracowany wspólnie przez Equinoctial Technological University (UTE) w Quito i Southwest State University (UESOR) w Rosji. Funkcją tego nanosatelity jest nauka wpływ czynników naturalnych i ludzi na strukturę i dynamikę różnorodności wytwarzanych w jonosferze i magnetosferze. Badania przeprowadzone w ramach tego monitoringu pomogą w tworzeniu modeli prognoz klimatycznych i telekomunikacji kosmicznej. Nowy rosyjski rekord Umieszczając na orbicie 72 statki kosmiczne w tym samym czasie, Rosja bije rekord startu. Wśród tych satelitów należy wymienić jednego z tych, które przyciągają uwagę i jest nim „Majak”. Ten satelita ma reflektor słoneczny w kształcie piramidy, który został zaprojektowany do odbijania światła słonecznego w kierunku Ziemi. Wśród przedmiotów stworzonych przez człowieka Majak będzie najjaśniejszy. Oprócz tego, że jest czwartym najjaśniejszym obiektem w przestrzeni, w tym naturalnymi ciałami kosmicznymi, po Słońcu, Księżycu i Wenus. L satelity, które zostały wystrzelone, są następujące: dwa państwowe i dwa prywatne satelity rosyjskich instytucji i ośrodków edukacyjnych; satelita ekwadorski; dwa niemieckie satelity; japoński satelita; dwa wspólne satelity opracowane przez Norwegię i Kanadę oraz 62 satelity amerykańskie. Znaczenie naturalnych satelitów Te elementy, które krążą wokół ciała niebieskiego, mają ogromne znaczenie dla człowieka. W przypadku naturalnych satelitów naszym wspaniałym przykładem jest księżyc i miał on ogromne znaczenie dla Badania i zachowania Ziemi. Dzieje się tak, ponieważ naturalne satelity wpływają na pewne zjawiska naturalne, które działają na planetach, wokół których krążą. Na planecie Ziemia Księżyc ma oczywisty związek z pływami, zgodnie z tym, co zostało naukowo udowodnione. Tego typu wydarzenia znane są od czasów starożytnych. Według badań zjawisko to wynika z przyciągania Księżyca do powierzchni wody i sprawia, że ​​pokrywa on większe lub mniejsze fragmenty wybrzeża w zależności od swojej pozycji. Według faza księżyca, pływy mogą wpływać na rybołówstwo, a ponadto ten sam pływ może być wykorzystywany do procesów pozyskiwania energii, sytuacji, które wyjaśniają jego znaczenie i znaczenie naszego naturalnego satelity. Znaczenie sztucznych satelitów Istnieje nieskończona liczba satelitów, które były tworzone od połowy XX wieku między innymi do wykonywania zadań wojskowych, łączności, badań. Z pewnością zarówno w przypadku naturalnych, jak i sztucznych satelitów jest jasne: zainteresowanie człowieka ta okoliczność sprawia, że ​​doceniamy jego znaczenie. W szczególności w odniesieniu do sztuczne satelitypowstały w odpowiedzi na różne problemy dotykające człowieka. Ich koncepcja zaczęła się rozwijać na początku XX wieku. Z biegiem czasu pogłębiało się, aż w drugiej połowie ubiegłego stulecia udało się go uruchomić. Pierwszy satelita umieszczony na orbicie odpowiadał projektowi Związku Radzieckiego. Obecnie tego typu element wykorzystywany jest do najróżniejszych funkcji, wyróżniając się wśród nich komunikacją i obserwacją ziemi do opracowywania map, geolokalizacji ten badanie przestrzeni kosmicznej wykorzystuje je również do bardziej efektywnej obserwacji innych ciał niebieskich. Krótko mówiąc, satelity naturalne i sztuczneMają ogromny wpływ na życie człowieka i innych żywych istot. W przypadku sztucznych satelitów w przyszłości pojawia się duża liczba nowych wariantów, które będą służyć znacznej poprawie jakości naszego życia. Treść artykułu jest zgodna z naszymi zasadami etyka redakcyjna. Aby zgłosić błąd, kliknij tutaj. Lista zadańOdpowiedzi do tej matury możesz sprawdzić również rozwiązując test w dostępnej już aplikacji Matura - testy i zadania, w której jest także, np. odmierzanie czasu, dodawanie do powtórek, zapamiętywanie postępu i wyników czy notatnik :) Dziękujemy developerom z firmy Geeknauts, którzy stworzyli tę aplikację Z wysokości ℎ1 =5,0 m ponad punktem P rzucono kulkę K1. Kulka upadła na poziome podłoże w odległości d od punktu P i potoczyła się dalej. Następnie z wysokości ℎ2 =2,0 m ponad punktem P rzucono taką samą kulkę K2. Druga kulka upadła także w odległości d od punktu P. Prędkości początkowe i kulek w każdym rzucie miały kierunki poziome i leżały w tej samej płaszczyźnie. Na poniższym rysunku zilustrowano tory ruchu kulek w układzie współrzędnych (x, y) – bez skali na osi x . Punkt P jest początkiem tego układu współrzędnych. W zadaniach pomiń opory ruchu oraz przyjmij do obliczeń, że przyśpieszenie ziemskie ma wartość g=9,8 m/s2. Oblicz iloraz – wartości prędkości początkowej kulki K1 i wartości prędkości początkowej kulki K2. Wynik liczbowy podaj zaokrąglony do dwóch cyfr znaczących. Zadanie Wartość prędkości początkowej kulki K1 wynosi v01 =7,9 m/s. Oblicz wartość vk1 prędkości kulki K1 tuż przed uderzeniem w poziome podłoże. Niewielkie ciało B o masie m zawieszono na nierozciągliwej nici o długości l, a następnie wprawiono je w ruch jednostajny po okręgu w płaszczyźnie poziomej. Górny koniec nici jest unieruchomiony w punkcie P. Gdy ciało porusza się po okręgu o środku O ze stałą wartością prędkości, to nić jest odchylona od kierunku pionowego o kąt α. Sytuację ilustruje rysunek obok, na którym oznaczono przyśpieszenie ziemskie . Potraktuj ciało B jako punkt materialny, pomiń opory ruchu oraz masę nici. Przyjmij, że to doświadczenie opisujemy w układzie inercjalnym. Zadanie Dokończ zdania tak, aby były Jeżeli wzrośnie wartość prędkości, z jaką ciało B porusza się po okręgu, to kąt α między nicią a kierunkiem pionowym 2. Jeżeli wzrośnie wartość prędkości, z jaką ciało B porusza się po okręgu, to wartość siły napięcia nici Wyprowadź wzór pozwalający wyznaczyć okres T obiegu ciała B po okręgu w zależności od: długości nici l, przyśpieszenia ziemskiego g oraz kąta α. Zadanie 3. (0–6)Rowerzysta w chwili t = 0 rozpoczął jazdę i poruszał się dalej po linii prostej. Urządzenie pomiarowe z mikrofonem, stojące w miejscu startu rowerzysty, rejestrowało częstotliwość ƒ dźwięku docierającego z głośnika zamocowanego na rowerze i czas t odbierania sygnału. Częstotliwość dźwięku wytwarzanego przez głośnik była równa ƒ0 =500 Hz (tzn. membrana głośnika drgała zawsze z taką częstotliwością). Wyniki pomiarów z poszczególnych etapów ruchu rowerzysty – aż do chwili t = t6 – przedstawiono na poniższym wykresie. Wartość prędkości dźwięku w powietrzu wynosi vd =340 m/s. Zadanie W każdym wierszu tabeli podaj odpowiedź wybraną spośród A–C oraz odpowiedź wybraną spośród D–G, która prawidłowo określa ruch i prędkość głośnika względem mikrofonu, gdy głośnik wysyłał sygnał rejestrowany w danym przedziale czasu. Przedział czasu Głośnik A. zbliżał się do mikrofonu. B. oddalał się od mikrofonu. C. był nieruchomy względem mikrofonu. Wartość prędkości głośnika D. rosła. E. malała. F. była stała, różna od zera. G. była równa 0. 0

dwa satelity krążą wokół ziemi po różnych orbitach